Quantum Convolutional Neural Networks with Interaction Layers for Classification of Classical Data
Abstract
Quantum convolutional networks utilizing three-qubit interaction layers demonstrate superior classification performance on image and one-dimensional datasets compared to existing approaches.
Quantum Machine Learning (QML) has come into the limelight due to the exceptional computational abilities of quantum computers. With the promises of near error-free quantum computers in the not-so-distant future, it is important that the effect of multi-qubit interactions on quantum neural networks is studied extensively. This paper introduces a Quantum Convolutional Network with novel Interaction layers exploiting three-qubit interactions, while studying the network's expressibility and entangling capability, for classifying both image and one-dimensional data. The proposed approach is tested on three publicly available datasets namely MNIST, Fashion MNIST, and Iris datasets, flexible in performing binary and multiclass classifications, and is found to supersede the performance of existing state-of-the-art methods.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper